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Abstract 

The m a x i m u m  entropy ( M A X E N T )  method has been 
used ab initio to solve a previously determined small 
centrosymmetric crystal structure, bis(acetyl- 
acetonato)dichlorot in ,  C1oH14C1704Sn [Miller & 
Schlemper  (1978). Inorg. Chim. Acta,  30, 131-134; 
Webster  & Wood  (1981). J. Chem. Res. ( M ) ,  pp. 
0450-0456]. The resulting electron density maps  are 
of  a very high quality, comparable  or even super ior  
to the convent ional  maps  calculated from the refined 

* Present address: Department of Applied Mathematics and 
Theoretical Physics, Silver Street, Cambridge, and Medical 
Research Council, Hills Road, Cambridge. 

phases.  The method,  therefore,  holds good promise 
for the solution of  larger and more difficult structures. 
The addi t ion of  simple chemical and symmetry  infor- 
mation about  the heavy atoms in the structure greatly 
improves the reconstruct ion and shows the capabil i ty 
of  M A X E N T  to solve structures from partial  frag- 
ments. 

I. Introduction 

Although the theory of  solving the phaseless Fourier  
t ransform problem by means  of  the max imum entropy 
( M A X E N T )  method has been extensively discussed 
(Collins, 1982; Steenstrup & Wilkins, 1984; Bricogne, 
1984; Livesey & Skilling, 1985; Navassa ,  1985; and 
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references therein), there have been few practical 
demonstrations of its use in crystallography. The 
difficulty is due partly to the non-quadratic behaviour 
of the Shannon-Jaynes entropy, but mainly to the 
multiple local maxima in this function when only 
intensity data are available. The Shannon-Jaynes 
entropy (Jaynes, 1983) is given by 

S = - ~ p, log (p,/m,) 
where Pi = p~/~, p~ is the proportion of the electron 
density p in pixel i, and mi is a 'measure', or default 
model, which encodes any prior knowledge about the 
position of the atoms. In the absence of such knowl- 
edge the {mi} are all set equal. 

Given information about the amplitudes of the 
structure factor we can set up a constraint function 
(Gull & Daniell, 1978; Livesey & SkiUing, 1985): 

C = ~  (Fk--Dk)2 
k=l 0"2 

where Dk is the observed magnitude of the kth struc- 
ture factor, Fk is the calculated magnitude of the kth 
structure factor for a trial map {p~}, 0"2 is the variance 
of the kth observed structure factor, and M is the 
number of observed structure factors. 

If the value of this constraint function is low enough 
(-< M), then our trial electron density map yield struc- 
ture factors in statistical agreement with the data. Our 
final MAXENT solution is that map which maximizes 
S under the constraint C-< M. In this formulation, 
centrosymmetric reflections are particularly difficult 
to handle because for a reflection to change sign 
during refinement its amplitude must pass through 
zero and thereby invokes a high penalty in the con- 
straint function. In contrast, complex structure factors 
are able to rotate their phases at constant amplitude 
and hence constant C. 

In this paper, we report the ab initio solution of a 
small heavy-atom centrosymmetric structure 
CloH14C1204Sn (TICLAC). Similar structures can, of 

(a) (b) 
J 

(c) 
Fig. 1. Figs. 1-6 show sections through the unit cell at various 

stages of the MAXENT ab initio reconstruction calculated on 
a 32 x 32 x 32 pixel grid. In all cases, (a) section 1, (b) section 
6, (c) section 9. The reconstruction from the starting set: 
F0o0, Fll~, Fo21 . [Contour levels (e A.-3): Figs. 1 to 5: 0-75, 1-5, 
2"25, 3.00; 6, 32, 58, 84, 110. Fig. 6: -0.70, -0"35, 0, 0.35, 0.75, 
1"05, 1.40; 1.7, 3.4, 5"1, 6"8.] 

course, be routinely solved by Patterson or direct 
methods, but our aims were: (1) To show clearly the 
close correspondence between direct methods and 
MAXENT, formally proved by Bricogne (1984). (2) 
To gain some understanding of the complexity of the 
phase-branching structure. (3) To test the ability of 
MAXENT to extend phases about heavy atoms. 

The second part of the investigation tested the 
ability of MAXENT to incorporate recognized frag- 
ments of the structure into the phase-determining 
procedure and thereby improve the images of the 
electron density in the crystal. 

Finally, we hoped to find MAXENT images of the 
high quality that we have come to expect in other 
fields of science (for a review see Gull & Skilling, 
1984). 

2. The ab initio solution 

TICLAC crystallizes in space group C2/c with a = 
13.965, b =7.889, c=  13.805/~, fl = 107.55 ° and 
Z =4. Webster & Wood (1981) report the structure, 
which was initially solved by Miller & Schlemper 
(1978), and give an amusing explanation for its per- 
verse name (suggestive of a titanium compound!). 
Our calculations used a 32 x 32 × 32 pixel grid (for 
the whole unit cell), but only a subset of structure 
factors (Ihl, Ikl, Ill -< 5) so as to reduce the size of the 
computation. 

In order to define the origin, two strong low-angle 
reflections (liT, U=0.31  and 021, U=0.16) ,  had 
arbitrary phases assigned (0 and 7r, respectively). The 
data are then linear functions of the electron density 
and the Cambridge MAXENT algorithm (Skilling & 
Bryan, 1984) was used to form the MAXENT map 
from these (unique) reflections alone. This is dis- 
played in Fig. 1. 

The MAXENT map predicts the amplitudes and 
phases of Fourier components not yet included, and 
the strongest of these are listed in Table 1. The largest 
amplitudes (and hence the strongest phase indica- 
tions) occur for those reflections forming triplets with 
the origin-defining set. The next strongest group of 
phase indications arise from quartet relationships, 
and so on. There is, however, one exception in that 
the reflection 040 can be formed as a triplet relation 
both from the 021 and 021 reflections and from 020, 
which was already present as a strong Fourier com- 
ponent in the map. These predict opposite signs for 
the phase of 040 which is therefore expected to be a 
weak prediction. So far, this is in complete agreement 
with the theory of direct methods, which uses the 
triplet and quartets explicitly. MAXENT, however, 
naturally takes into account the effect of quintets, 
sextets and all higher-order relationships. Although 
these relationships are weak at this stage of the analy- 
sis, far more high-order relationships can be formed 
than low-order ones, so their cumulative effect 
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Table 1. Amplitude and phase predictions of the 
MAXENT solution using only the origin-defining set 

of reflections 

U(hkl) 
Starting set 000 1.00 

(Origin fixing) 1 l i  0.31 
021 0-16 

M A X E N T  True True  
HKL predict ions value Relation phase ? 

(U's) (U's) 
202 -0.15 -0.37 Triplet Yes 

020t -0.14 -0.17 Triplet Yes 
222t 0-07 0.01 Triplet Yes 
132t 0.06 -0,06 Triplet No 
130t 0.06 0.07 Triplet Yes 
112f 0.06 0.12 Triplet Yes 
110? -0-06 -0,03 Triplet Yes 
313 -0.03 -0,19 Quartet Yes 
041 -0-02 -0.19 Quartet Yes 
223 0-02 0.16 Quartet Yes 
221 -0.02 0-20 Quartet No 
040 -0.02 0.27 Tri + Quin* No 
13i -0"02 -0.08 Quartet Yes 
24i 0.01 0.10 Quartet Yes 
243 -0-01 0.03 Quartet No 

332t -0.005 0.002 Quartet ? 
312 0.003 0.02 Quartet Yes 

Uhkt here are defined as ]Fhkll/Fooo- No attempt is made to correct for the 
atomic form factor, nor for the thermal Debye-Waller factors. 

* The 040 reflection forms triplets with both 021 (which is in the starting 
set) and 020 (which is already a strong component of the MAXENT map). 
These phase indications are contradictory, so the MAXENT prediction is 
weak. 

t New structure factors included in the second cycle. 

becomes important when many reflections are con- 
sidered. 

Structure factors with predicted amplitudes that 
were greater than half of their measured values were 
then used together with the origin-definining set to 
form a new map. The phases were set to the values 
predicted by the previous map. Of the seven ampli- 
tudes included at this stage only one, 132, was 
seriously in error (the measured amplitude of another 
reflection 332 is so small that it can readily change 
sign). The new map predicted further strong phase 
indications: these new reflections were then included 
to form a new map, and so on. 

Fig. 2 shows the map after four cycles of this 
phase-determination procedure when 27 unique 

(3 

? Gr 
(a) (b) (c) 

Fig. 2. The  recons t ruc t ion  after  four  cycles when 27 unique  ampli- 
tudes had  been included.  

structure factors had been included. The Sn atoms 
have been unambiguously located and there is some 
indication of the octahedral coordination of the CI 
and O atoms around Sn. Fig. 3 shows the map made 
from 72 unique reflections. The CI and O atoms are 
now clearly visible and there is some weak structure 
at the position of the carbon chain. The map recon- 
structed from 159 unique reflections with Ihl, Ikl, I11-< 
5 is displayed in Fig. 4. We refer to these maps as 
'phaseless' since they were calculated without any 
knowledge of the refined phases. For comparison, the 
MAXENT reconstruction from these reflections using 
calculated ('true') phases is shown as Fig. 5, and Fig. 
6 is the 'conventional' electron density map derived 
from the same amplitude and phases. 

The 'phaseless' and phased reconstructions are very 
similar. All the atoms are correctly located, with the 
following exceptions: In the first section of the phase- 
less map (see Fig. 4) there are two extra maxima, 
although these would be rejected as chemically mean- 
ingless when interpreting the structure in terms of 
atoms. The extra maxima occurring in section 6, 
however, appear at first sight to be chemically feasible 
if they represent C atoms which are hydrogen bonded 
to the negatively charged C1 atom. The conventional 
map shows how these features arose. The first section 
of the conventional map contains stronger truncation 
ripples than true peaks and so this subset of the 
structure factors is not sufficient to determine the 
structure in this plane. At the position of the 'extra 
atom' found in section 6 there is a severe positive 
truncation ripple. Although the maximum-entropy 

(a)  

(c) 

~X%-:3 

( 
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.( 

(c) 
Fig. 3, The  reconst ruct ion when 72 ampli tudes had been included.  

(a) (b) 
Fig. 4. The  final ab initio reconstruct ion from 159 ampli tudes.  
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algorithm strongly attenuates truncation ripples (Gull 
& Daniell, 1978), it does not remove them entirely. 
Presumably, the program latched onto this spurious 
feature, creating a false phase-extension path. Sub- 
sequent investigation has suggested that the artefact 
was enhanced by the choice of grid size; a finer grid 
(64 x 64 x 64) seems to reduce this effect. 

Fig. 5 is, nevertheless, an excellent ab initio recon- 
struction of the electron density. Comparison with 
the 'true' phases shows that 90% of the phases were 
correctly determined, which is demonstrably 
sufficient to solve the structure. Many of the regions 
in the map have very low electron density, which 
suggests that the algorithm is having difficulty fitting 
the map. Despite this, a positive map consistent with 
the data has been found even though 10% of the 
phases were incorrectly determined. Similarly, 
inspection of the residuals R[=(IFkl-IDkl)/ k] 
revealed no unusually large values which might have 
indicated that phases had been determined incor- 
rectly. 

The origin-defining reflections were chosen to be 
strong amplitudes near the origin of reciprocal space 
having the correct parity to determine the origin 
uniquely. No test was applied to consider how 
strongly correlated these structure factors were to 
other strong reflections. Such a 'convergence- 
mapping' technique has yet to be developed using 
MAXENT, but it should be able to find more power- 
ful starting sets. This would in turn help to solve more 
complex structures. 

The approach described above is not necessarily 
being proposed as a practical programme for solving 
centrosymmetric crystals. There is, for instance, no 
way of refining the phase predictions once made. The 
MAXENT map with 90% of the phases correctly 
determined is, nevertheless, superior to the conven- 
tional map using the 'true' phases. MAXENT yielded 
the correct structure from two arbitrarily chosen 
(though strong) origin-defining reflections, showing 
that it is more than a theorist's dream. A drawback 
is that wrong phase paths must be followed a long 
way before they are forbidden or appear unreason- 

able. This prevents the early pruning of the branches 
of the phase tree (Bricogne, 1984; Livesey, 1984). 

3. The Bayesian approach to phase extension 

A model map, which contain fragments of recognized 
structure, predicts phases and amplitudes for all the 
reflections, but we need a way for deciding which of 
these phase predictions to accept. Rather than the 
simple ad hoc rule of § 2, a more sophisticated 
Bayesian approach, consistent with the result derived 
by Woolfson (1956), is now described. 

The structure factors of a crystal with electron 
density p(r) are given by the Fourier transform 

F(k) = ~ p(r) exp (i27rk. r). 

This electron density p(r) may be conveniently 
decomposed into a contribution from the atoms that 
have already been located, and a contribution from 
the atoms as yet unlocated" 

N N, N~ 

p(r) = ~'~ p,(r)= ~ p,(r)+ ~'~ p.(r), 
j = l  1 = 1  u = l  

where N = number of atoms in the unit cell, l=  
located atom, u = unlocated atom, and pj = electron 
density of the j th atom. 

In terms of the Fourier transform F(k) (or structure 
factors) we have 

F ( k ) =  Ft(k) + Fu(k). 

We now consider the contribution from individual 
atoms: because atoms are roughly the same shape, 
and do not significantly overlap, we can deconvolve 
the shape of the electron density and replace the 
atoms by delta functions at {rj}: 

Then 

pj(r) = Z/8( r -  rj). 

F(k) = ~ ~ pj(r) exp (i27rk. r) 
r j 

= ~ Zj exp (i27rk. rj) 
J 

00 
. ! 

1 t} 

(a) (b) 

@ 

(c) (a) (b) 

Fig. 5. The MAXENT map from 159 amplitudes with refined 
phases (Webster & Wood, 1981). 

(c) 
Fig. 6. The conventional Fourier map from 159 reflections and 

refined phases. 
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For the unlocated atoms {ru} we know only their 
individual strengths of scattering, which are propor- 
tional to their atomic numbers {Zu}, and not their 
positions, so F~ (k) is the resultant of a sum of vectors 
with known magnitudes but unknown phases. 
Chemical knowledge such as bond lengths and bond 
angles would certainly constrain the phases further, 
but if we choose to ignore these considerations and 
assign the phases randomly we will obtain the follow- 
ing likelihood: 

prob [ f,,(k)l{Z.}] oc exp [ - I  f,,(k)lV2~q, 
where 

N u 

0-~= E Z~. 
u=l 

Although atoms are not really points, they are 
sufficiently small so that 0- = 0-(k) is a slowly varying 
function of k. We therefore approximate 0-2(k) bY 
(o'2), where (0 "2) is a spherical average of the relevant 
atomic form factors over the k space of interest. With 
this approximation, and given the model, the likeli- 
hood that the kth structure factor is F(k) becomes 

prob [ F(k)lm(r),  (0-2)] 

oc exp [ -  IF , (k)  - F(k) 2/2(0-2)]. 

By comparison with other uncertainties, our 
intensities are measured to good accuracy, so we 
know that the magnitude of the kth structure factor 
is D(k) I. In the case of a centrosymmetric crystal 
such as TICLAC, the phases can only be 0 or 7r, so 
the predicted phase is simply 'fight' or 'wrong'. Thus, 
given the model, we can calculate the probability that 
the true structure factor has the same phase as our 
model, but magnitude D(k) • 

prob [ F ( k ) =  D(k)l,  arg (Fz(k)) m(r), (0-2)] 

ocexp [ - ( IF , (k )  - D(k) )2/2(0-2)]. 

We can also find the probability that the true structure 
factor is zr out of phase with the model prediction: 

prob [ F(k) = ID(k)l, - a rg  (Ft(k))lm(r), (0-2)] 

ocexp [-(IF,(k)l+ D(k)l)2/2(0-2)]. 

The probability that the true (unmeasured) phase is 
the same as the model phase, therefore, is given by 

prob [true phase = model phase] 

prob [true phase = - m o d e l  phase] 

=exp [2 D(k)llF,(k)l/(0-=)] 

= exp (2FOM/(0-2)), 

where FOM--mode l  amplitude x measured ampli- 
tude. 

For this centrosymmetric case, the figure of merit 
above (FOM) is a direct measure of the probability 
that our model phase is the true phase. For the more 

general case of the non-centrosymmetric crystal, the 
phase can lie anywhere between :~ rr and our predic- 
ted phase is not simply 'right' or 'wrong', but it is 
simple to show that this FOM is related to the variance 
of the true phase about the model prediction. FOM 
is, therefore, a measure of the reliability of a phase 
prediction in both cases, and hence a useful statistic 
in deciding which of the phase predictions to accept. 

4. The inclusion of partial structure 

In Figs. 2 and 3 (27 and 72 reflections used) the Sn 
atoms and their surrounding octahedra of C1 and O 
atoms were clearly recognizable as such, given the 
knowledge of the chemical formula. We used this 
basic chemical knowledge to see what further 
improvements we could make to the rate of conver- 
gence and quality of the electron density map. 

The position of Sn, the heavy atom in TICLAC, is 
easily located: the ab initio solution shows that this 
can be uniquely deduced from the map constructed 
from the origin-defining structure factors (and their 
symmetry-related reflections), together with the 
knowledge of the allowable special positions in the 
space group. The phases predicted by a model map 
which contained only the tin atoms at their correct 
positions were ranked in descending order of their 
FOM (see above), so that the more reliable phase 
predictions were at the top of the list. We expected 
the number of correct predictions to be related to the 
proportion of correctly located atoms in our model. 
We adopted a simple rule of thumb and accepted the 
top SELECT fraction of the phase predictions, 
defined by 

SELECT-~ y~ Z(located) = (e- in located atoms) 
Z(all) (e-in the unit cell) " 

Table 2 shows the effect of using this FOM and 
selection criterion. As expected, the FOM ranking 
places the more reliable phase predictions at the top 

® 

® 

© 
® 

© 
® 

~ o ~  

(a) (b) 
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@ 
® 
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(c) 
Fig. 7. The equivalent sections to Figs. 1-6 of the final MAXENT 

map after chemical knowledge had been assumed. The recon- 
struction was carried out on a 64 x 64 x 64 grid, using the top 
60% of the 1196 measured amplitudes ranked according to their 
FOM from a model containing the previously located Sn and 
CI atoms. (a) Section 1, (b) section 11, (c) section 17. [Contour 
levels (e/~,-3): 1.2, 2.2, 3.2, 4.2; 6, 34, 62, 90.] 



S. F. GULL, A. K. LIVESEY AND D. S. SIVIA 117 

Table 2. Comparison of the 'true' phases with the 
model phases ranked according to a figure of merit, 

FOM = measured amplitude x model amplitude 

Selection criteria (What fraction of the phase predictions accepted) 

Model SELECT 

(Located atoms) ( Y.Z(located)~ 
Y~ Z(all) ] 

Sn 30% 
Sn, CI 50% 
Sn, C10 60% 
Sn, CI, O, C 80% 

Error comparison with data set (1) (159 reflections with Ihl, Ikl, 
Ill-< 5) 

Model 
Sn 
Sn, CI 
Sn, CI, O 
Sn, CI, O, C 

Fraction Position Fraction 
of data of the of selected 
wrongly first wrong data wrongly 
phased prediction phased 
19/159 48% 0/50 
21/159 56% 0/80 
21/159 67% 0/95 
15/159 77% 1/127 

Error comparison with 
Ill- 16) 

Model 
Sn 
Sn, CI 
Sn, C1, O 
Sn, CI, O, C 

data set (2) (1196 reflections with Ihl, Ikl, 

Fraction Position Fraction 
of data of the of selected 
wrongly first wrong data wrongly 
phased prediction phased 

116/1196 25% 5/600 
107/196 42% 7/720 
78/1196 58% 11/960 

of the list and the wrong predictions are pushed 
further down as more structure is incorporated into 
the model map. 

The new structure-solving strategy is as follows: 
once Sn has been located, make a model map which 
is flat (with uniform Pe) apart from the Sn atoms. Use 
the top 30% of the FOM-ranked predictions to assign 
phases to the corresponding measured amplitudes 
and generate a MAXENT map on the basis of these 
data alone. This should enable us to locate more 
atoms (probably C1, the next heaviest). Now use the 
predictions of a higher-order model, containing the 
Sn and C1 atoms, to assign phases to the top 50% of 
the data, make a better MAXENT map, and repeat 
the process. 

This procedure was found to be very successful for 
TICLAC: the Sn+CI model was sufficient to locate 
all the non-hydrogen atoms unambiguously. Fig. 7 
shows the MAXENT reconstruction on a 64 x 64 x 64 
grid, using the top 60% of the 1196 measured ampli- 
tudes (Ih[, k, l[_ 16), phased with an Sn+C1 model. 
The model map (which incorporates our prior 
chemical knowledge) and the FOM combine to give 
us some well phased data. In this way we circumvent 
the problems associated with the full phaseless prob- 
lem, whilst the power of maximum entropy is used 
to tackle the problem of 'missing' data (with phases 
yet to be associated). We have found it better to use 
a fraction of the data that is reliably phased at any 
stage thffn to use a larger proportion with (say) 10% 
wrongly phased. The result is a high-quality electron 
density map of TICLAC. 
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